
Python Variables

Variables
Variables are containers for storing data values.

Creating Variables
Python has no command for declaring a variable.

A variable is created the moment you first assign a value to it.

Example

x = 5

y = "John"

print(x)

print(y)

Variables do not need to be declared with any particular type, and can even
change type after they have been set.

Example

x = 4 # x is of type int

x = "Sally" # x is now of type str

print(x)

Casting
If you want to specify the data type of a variable, this can be done with casting.

Example

x = str(3) # x will be '3'

y = int(3) # y will be 3

z = float(3) # z will be 3.0

Get the Type
You can get the data type of a variable with the type() function.

Example

x = 5

y = "John"

print(type(x))

print(type(y))

Single or Double Quotes?
String variables can be declared either by using single or double quotes:

Example

x = "John"

is the same as

x = 'John'

Case-Sensitive
Variable names are case-sensitive.

Example

This will create two variables:

a = 4

A = "Sally"

#A will not overwrite a

Python - Variable Names

Variable Names
A variable can have a short name (like x and y) or a more descriptive name (age,
carname, total_volume). Rules for Python variables:

● A variable name must start with a letter or the underscore character
● A variable name cannot start with a number
● A variable name can only contain alpha-numeric characters and

underscores (A-z, 0-9, and _)
● Variable names are case-sensitive (age, Age and AGE are three different

variables)

Example
Legal variable names:

myvar = "John"

my_var = "John"

_my_var = "John"

myVar = "John"

MYVAR = "John"

myvar2 = "John"

Example

Illegal variable names:

2myvar = "John"

my-var = "John"

my var = "John"

Remember that variable names are case-sensitive

Multi Words Variable Names
Variable names with more than one word can be difficult to read.

There are several techniques you can use to make them more readable:

Camel Case
Each word, except the first, starts with a capital letter:

myVariableName = "John"

Pascal Case
Each word starts with a capital letter:

MyVariableName = "John"

Snake Case
Each word is separated by an underscore character:

my_variable_name = "John"

Python Variables - Assign
Multiple Values

Many Values to Multiple Variables
Python allows you to assign values to multiple variables in one line:

Example

x, y, z = "Orange", "Banana", "Cherry"

print(x)

print(y)

print(z)

Note: Make sure the number of variables matches the number of values, or else
you will get an error.

One Value to Multiple Variables
And you can assign the same value to multiple variables in one line:

Example

x = y = z = "Orange"

print(x)

print(y)

print(z)

Unpack a Collection
If you have a collection of values in a list, tuple etc. Python allows you to extract
the values into variables. This is called unpacking.

Example

Unpack a list:

fruits = ["apple", "banana", "cherry"]

x, y, z = fruits

print(x)

print(y)

print(z)

Python - Output Variables

Output Variables
The Python print() function is often used to output variables.

Example

x = "Python is awesome"

print(x)

In the print() function, you output multiple variables, separated by a comma:

Example

x = "Python"

y = "is"

z = "awesome"

print(x, y, z)

You can also use the + operator to output multiple variables:

Example

x = "Python "

y = "is "

z = "awesome"

print(x + y + z)

Notice the space character after "Python " and "is ", without them the result
would be "Pythonisawesome".

For numbers, the + character works as a mathematical operator:

Example

x = 5

y = 10

print(x + y)

In the print() function, when you try to combine a string and a number with
the + operator, Python will give you an error:

Example

x = 5

y = "John"

print(x + y)

The best way to output multiple variables in the print() function is to separate
them with commas, which even support different data types:

Example

x = 5

y = "John"

print(x, y)

Python - Global Variables

Global Variables
Variables that are created outside of a function (as in all of the examples above)
are known as global variables.

Global variables can be used by everyone, both inside of functions and outside.

Example

Create a variable outside of a function, and use it inside the function

x = "awesome"

def myfunc():

print("Python is " + x)

myfunc()

If you create a variable with the same name inside a function, this variable will
be local, and can only be used inside the function. The global variable with the
same name will remain as it was, global and with the original value.

Example

Create a variable inside a function, with the same name as the global variable

x = "awesome"

def myfunc():

x = "fantastic"

print("Python is " + x)

myfunc()

print("Python is " + x)

The global Keyword
Normally, when you create a variable inside a function, that variable is local,
and can only be used inside that function.

To create a global variable inside a function, you can use the global keyword.

Example

If you use the global keyword, the variable belongs to the global scope:

def myfunc():

global x

x = "fantastic"

myfunc()

print("Python is " + x)

Also, use the global keyword if you want to change a global variable inside a
function.

Example

To change the value of a global variable inside a function, refer to the variable
by using the global keyword:

x = "awesome"

def myfunc():

global x

x = "fantastic"

myfunc()

print("Python is " + x)

